Um olhar mais atento no Algoritmo médio avançado de CODAS A média móvel versátil no algoritmo CODAS avançado filtra o ruído da forma de onda, extrai significa, e elimina a deriva da linha de base. A média móvel é uma técnica matemática simples usada principalmente para eliminar aberrações e revelar a tendência real em uma coleção de pontos de dados. Você pode estar familiarizado com isso com a média de dados ruidosos em um experimento de física de primeiro ano, ou de rastrear o valor de um investimento. Você pode não saber que a média móvel também é um protótipo do filtro de resposta ao impulso finito, o tipo de filtro mais comum usado na instrumentação baseada em computador. Nos casos em que uma determinada forma de onda está cheia de ruído, onde uma média precisa ser extraída de um sinal periódico, ou onde uma linha de base devagar deve ser eliminada de um sinal de freqüência mais alta, um filtro médio móvel pode ser aplicado para alcançar o desejado resultado. O algoritmo de média móvel de Advanced CODAS oferece esse tipo de desempenho de filtragem de formas de onda. O CODAS avançado é um pacote de software de análise que opera em arquivos de dados de forma de onda existentes criados pela WinDaq de primeira geração ou pacotes de aquisição de dados WinDaq de segunda geração. Além do algoritmo da média móvel, o CODAS Avançado também inclui um utilitário do gerador de relatórios e rotinas de software para a integração de formas de onda, a diferenciação, a captação de picos e do vale, a rectificação e as operações aritméticas. Teoria do Filtro Médio em Mudança O algoritmo de média móvel móvel da DATAQ Instruments permite uma grande flexibilidade nas aplicações de filtragem de formas de onda. Ele pode ser usado como um filtro passa-baixa para atenuar o ruído inerente em muitos tipos de formas de onda, ou como um filtro passa-alto para eliminar uma linha de base de derivação a partir de um sinal de freqüência mais alta. O procedimento usado pelo algoritmo para determinar a quantidade de filtragem envolve o uso de um fator de suavização. Este fator de suavização, controlado por você através do software, pode ser aumentado ou diminuído para especificar o número de pontos de dados de formas de onda reais ou amostras que a média móvel abrangerá. Qualquer forma de onda periódica pode ser pensada como uma string longa ou coleção de pontos de dados. O algoritmo realiza uma média móvel tirando dois ou mais desses pontos de dados da forma de onda adquirida, adicionando-os, dividindo sua soma pelo número total de pontos de dados adicionados, substituindo o primeiro ponto de dados da forma de onda pela média calculada, e Repetindo os passos com o segundo, terceiro e assim por diante os pontos de dados até o final do dado ser alcançado. O resultado é uma segunda forma de onda gerada que consiste na média de dados e com o mesmo número de pontos que a forma de onda original. Figura 1 8212 Qualquer forma de onda periódica pode ser pensada como uma string longa ou coleção de pontos de dados. Na ilustração acima, os pontos de dados de forma de onda consecutivos são representados por quotyot para ilustrar como a média móvel é calculada. Neste caso, foi aplicado um fator de suavização de três, o que significa que três pontos consecutivos de dados da forma de onda original são adicionados, a sua soma dividida por três, e esse quociente é traçado como o primeiro ponto de dados de uma forma de onda gerada. O processo se repete com o segundo, terceiro e assim por diante pontos de dados da forma de onda original até o final do dado ser alcançado. Uma técnica especial de quotfeatherchot significa os pontos de início e de data final da forma de onda original para garantir que a forma de onda gerada contenha o mesmo número de pontos de dados que o original. A Figura 1 ilustra como o algoritmo da média móvel é aplicado aos pontos de dados da forma de onda (que são representados por y). A ilustração possui um fator de suavização de 3, o que significa que o valor médio (representado por a) será calculado em 3 valores de dados de forma de onda consecutivos. Observe a sobreposição que existe nos cálculos da média móvel. É esta técnica de sobreposição, juntamente com um tratamento especial de início e final que gera o mesmo número de pontos de dados na forma de onda média que existe no original. A forma como o algoritmo calcula uma média móvel merece um olhar mais atento e pode ser ilustrada com um exemplo. Digamos que temos uma dieta há duas semanas e queremos calcular nosso peso médio nos últimos 7 dias. Nós sumaríamos nosso peso no dia 7 com nosso peso nos dias 8, 9, 10, 11, 12 e 13 e depois multiplicaremos por 17. Para formalizar o processo, isso pode ser expresso como: a (7) 17 (y ( 7) y (8) y (9). Y (13)) Esta equação pode ser generalizada adicionalmente. A média móvel de uma forma de onda pode ser calculada por: Onde: um valor médio n posição do ponto de dados s fator de suavização y valor do ponto de dados real Figura 2 8212 A forma de onda de saída da célula de carga mostrada original e não filtrada no canal superior e como um ponto de 11 pontos Forma de onda média movida no canal inferior. O ruído que aparece na forma de onda original foi devido às intensas vibrações criadas pela imprensa durante a operação de embalagem. A chave para essa flexibilidade de algoritmos é a sua ampla gama de fatores de suavização selecionáveis (de 2 a 1.000). O fator de suavização determina quantos pontos de dados reais ou amostras serão calculados de forma média. Especificar qualquer fator de suavização positivo simula um filtro passa-baixa enquanto especifica um fator de suavização negativo simula um filtro de passagem alta. Dado o valor absoluto do fator de suavização, os valores mais altos aplicam maiores restrições de suavização na forma de onda resultante e, inversamente, os valores mais baixos aplicam menos alisamento. Com a aplicação do fator de suavização apropriado, o algoritmo também pode ser usado para extrair o valor médio de uma dada forma de onda periódica. Um fator de suavização positivo mais alto é tipicamente aplicado para gerar valores de forma de onda média. Aplicando o algoritmo de média móvel Uma característica saliente do algoritmo de média móvel é que ele pode ser aplicado muitas vezes na mesma forma de onda, se necessário para obter o resultado de filtragem desejado. A filtragem de formas de onda é um exercício muito subjetivo. O que pode ser uma forma de onda devidamente filtrada para um usuário pode ser inaceitavelmente ruidoso para outro. Só você pode avaliar se o número de pontos médios selecionados foi muito alto, muito baixo ou simplesmente correto. A flexibilidade do algoritmo permite que você ajuste o fator de suavização e faça outro passar pelo algoritmo quando resultados satisfatórios não são alcançados com a tentativa inicial. A aplicação e as capacidades do algoritmo da média móvel podem ser ilustradas melhor pelos seguintes exemplos. Figura 3 8212 A forma de onda ECG mostrada original e não filtrada no canal superior e como uma forma de onda em média móvel de 97 pontos no canal inferior. Observe a ausência de deriva basal no canal inferior. Ambas as formas de onda são mostradas em uma condição comprimida para apresentação. Uma aplicação de redução de ruído Nos casos em que uma determinada forma de onda está cheia de ruído, o filtro médio móvel pode ser aplicado para suprimir o ruído e produzir uma imagem mais clara da forma de onda. Por exemplo, um cliente CODAS avançado estava usando uma imprensa e uma célula de carga em uma operação de empacotamento. Seu produto deveria ser comprimido para um nível predeterminado (monitorado pela célula de carga) para reduzir o tamanho da embalagem necessária para conter o produto. Por razões de controle de qualidade, eles decidiram monitorar a operação da imprensa com instrumentação. Ocorreu um problema inesperado quando começaram a ver a saída de células de carga em tempo real. Uma vez que a máquina de impressão vibrou consideravelmente enquanto estava em operação, a forma de onda de saída das células de carga era difícil de discernir porque continha uma grande quantidade de ruído devido à vibração, conforme mostrado no canal superior da Figura 2. Este ruído foi eliminado ao gerar um canal em média móvel de 11 pontos como mostrado no canal inferior da Figura 2. O resultado foi uma imagem muito mais clara da saída das células de carga. Uma aplicação na eliminação da deriva da linha de base Nos casos em que uma linha de base devagar deve ser removida de um sinal de freqüência mais alta, o filtro de média móvel pode ser aplicado para eliminar a linha de base da derivação. Por exemplo, uma forma de onda ECG tipicamente exibe algum grau de andar de linha base como pode ser visto no canal superior da Figura 3. Esta deriva de linha de base pode ser eliminada sem alterar ou perturbar as características da forma de onda como mostrado no canal inferior da Figura 3. Isto é conseguido aplicando um fator de alívio de valor negativo apropriado durante o cálculo da média móvel. O fator de suavização apropriado é determinado dividindo um período de forma de onda (em segundos) pelo intervalo de amostra de canais. O intervalo de amostra de canais é simplesmente o recíproco da taxa de amostragem dos canais e é convenientemente exibido no menu de utilidade média móvel. O período da forma de onda é facilmente determinado a partir da tela de exibição posicionando o cursor em um ponto conveniente na forma de onda, definindo um marcador de tempo e, em seguida, movendo o cursor um ciclo completo para longe do marcador de tempo exibido. A diferença horária entre cursor e marcador de tempo é um período de forma de onda e é exibida na parte inferior da tela em segundos. No nosso exemplo de ECG, a forma de onda possuía um intervalo de amostra de canal de 0,004 segundos (obtido a partir do menu de utilidade média móvel) e um período de forma de onda foi medido para span .388 segundos. Dividir o período da forma de onda pelo intervalo de amostra dos canais nos deu um fator de suavização de 97. Como é a deriva da linha de base que estamos interessados em eliminar, aplicamos um fator de suavização negativo (-97) ao algoritmo da média móvel. Isso, de fato, subtraiu o resultado médio móvel do sinal da forma de onda original, que eliminou a deriva da linha de base sem alterar a informação da forma de onda. Outros Problemas Médicos em Movimento de Formas de Onda Qualquer que seja a aplicação, a razão universal para aplicar um filtro de média móvel é superar quotly as aberrações altas e baixas e revelar um valor de forma de onda intermediária mais representativo. Ao fazer isso, o software não deve comprometer outros recursos da forma de onda original no processo de geração de uma forma de onda em média móvel. Por exemplo, o software deve ajustar automaticamente as informações de calibração associadas ao arquivo de dados original, de modo que a forma de onda em média móvel esteja nas unidades de engenharia apropriadas quando geradas. Todas as leituras nas figuras foram tiradas usando o software WinDaq Data AcquisitionAs outros já mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (filtro de resposta finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados como convoluções explícitas e filtros IIR com equações. O filtro IIR particular que eu uso muito em microcontroladores é um filtro passa-baixa de um único pólo. Este é o equivalente digital de um simples filtro analógico R-C. Para a maioria dos aplicativos, estes terão melhores características do que o filtro de caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são resultado de alguém que não presta atenção na classe de processamento de sinal digital, não como resultado de precisar de suas características particulares. Se você quiser apenas atenuar as altas freqüências que você conhece são ruim, um filtro passa-baixa de um único pólo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt-- FILT FF (NEW-FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NOVO é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fração do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado, já que a saída nunca muda. Para FF 1, realmente não há nenhum filtro, já que a saída apenas segue a entrada. Os valores úteis estão no meio. Em sistemas pequenos, você escolhe FF para ser 12 N, de modo que o multiplica por FF pode ser realizado como uma mudança direta por N bits. Por exemplo, FF pode ser 116 e multiplicar por FF, portanto, uma mudança direta de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e de um som, embora os números geralmente sejam mais amplos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Normalmente, tomo as leituras do AD significativamente mais rápidas do que são necessárias e aplico dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série e atenua 12 dBoctave acima da frequência de rolagem. No entanto, para as leituras de AD, geralmente é mais relevante olhar para o filtro no domínio do tempo, considerando sua resposta passo a passo. Isso indica o quão rápido o sistema verá uma mudança quando a coisa que você está medindo muda. Para facilitar a concepção desses filtros (o que significa apenas escolher FF e decidir quantos deles entrar em cascata), uso o meu programa FILTBITS. Você especifica o número de bits de mudança para cada FF na série de filtros em cascata, e ele calcula a resposta de passo e outros valores. Na verdade, eu costumo executar isso através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV e, em seguida, traça o arquivo CSV. Por exemplo, aqui é o resultado do PLOTFILT 4 4: os dois parâmetros para PLOTFILT significam que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar o multiplicar pelo FF. Os dois valores FF são, portanto, 116 neste caso. O rastreamento vermelho é a resposta do passo da unidade, e é o principal aspecto a ser observado. Por exemplo, isso indica que, se a entrada muda instantaneamente, a saída do filtro combinado será fixada em 90 do novo valor em 60 iterações. Se você se preocupa com 95 horas de colonização, então você precisa esperar cerca de 73 iterações e por 50 horas de reposição apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isso dá uma idéia da supressão de ruído aleatória. Parece que nenhuma amostra única causará mais de 2,5 mudanças na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia de que exatamente o conteúdo era dos números aleatórios escolhidos como entrada de ruído branco para esta corrida de PLOTFILT. É só dar-lhe uma sensação áspera de quanto ele será esmagado e quão suave é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC, estão disponíveis na versão do software PIC Development Tools na minha página de downloads de software. Adicionado sobre a precisão numérica que vejo a partir dos comentários e agora uma nova resposta que tem interesse em discutir o número de bits necessários para implementar este filtro. Observe que o Multiply by FF criará novos bits do Log 2 (FF) abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 12 N, de modo que esse multiplicação seja efetivamente realizado por uma mudança direta de N bits. FILT é, portanto, geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista dos processadores. Por exemplo, se você estiver filtrando as leituras de AD de 10 bit e N 4 (FF 116), então você precisa de 4 bits de fração abaixo das leituras de AD inteiras de 10 bits. A maioria dos processadores, você estará fazendo operações inteiras de 16 bits devido às leituras AD de 10 bits. Nesse caso, você ainda pode fazer exatamente as mesmas operações de inteiro de 16 bits, mas comece com as leituras de AD esquerda deslocadas em 4 bits. O processador não conhece a diferença e não precisa. Fazer matemática em inteiros inteiros de 16 bits funciona se você considera que eles são 12.4 pontos fixos ou verdadeiros inteiros de 16 bits (16.0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não deseja adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria que ter 1044 18 bits para não perder informações. Na prática, em uma máquina de 8 bits que significa que você use valores de 24 bits. Tecnicamente, apenas o segundo pólo de dois precisaria do valor mais amplo, mas, para a simplicidade do firmware, costumo usar a mesma representação e, desse modo, o mesmo código para todos os pólos de um filtro. Geralmente eu escrevo uma sub-rotina ou macro para executar uma operação de polio de filtro, depois aplique isso a cada pólo. Se uma sub-rotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer forma, eu uso algum estado de rascunho para passar NOVO no subroutinemacro, que atualiza FILT, mas também carrega isso no mesmo estado de rascunho NOVO estava dentro. Isso facilita a aplicação de vários pólos desde que o FILT atualizado de um pólo é o NOVO Do próximo. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado logo após FILT no caminho de saída. Dessa forma, a sub-rotina atua automaticamente em filtros consecutivos na memória se for chamado várias vezes. Com uma macro, você não precisa de um ponteiro, pois você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos esses exemplos são implementados como macros usando o meu pré-processador PIC assembler. Que é mais capaz do que qualquer uma das instalações de macro incorporadas. Clabacchio: Outro problema que eu deveria ter mencionado é a implementação do firmware. Você pode escrever uma sub-rotina de filtro passa-baixa de um único pó uma vez, e depois aplicá-la várias vezes. Na verdade, geralmente escrevo uma sub-rotina para levar um ponteiro na memória para o estado do filtro, então, avance o ponteiro para que possa ser chamado sucessivamente de forma fácil para realizar filtros multipolar. Ndash Olin Lathrop 20 de abril 12 às 15:03 1. Muito obrigado por suas respostas - todos eles. Eu decidi usar este Filtro IIR, mas este Filtro não é usado como um Filtro LowPass Padrão, pois eu preciso usar os Valores de Contador médios e compará-los para detectar Mudanças em um determinado intervalo. Uma vez que estes valores são de dimensões muito diferentes dependendo do hardware que eu queria tomar uma média para poder reagir automaticamente a essas mudanças específicas de hardware. Ndash sensslen 21 de maio 12 às 12:06 Se você pode viver com a restrição de um poder de dois itens a média (ou seja, 2,4,8,16,32 etc.), então a divisão pode ser feita com facilidade e eficiência em uma Micro de baixo desempenho sem nenhuma divisão dedicada porque pode ser feito como uma mudança de bit. Cada turno para a direita é um poder de dois, por exemplo: O OP pensou que ele tinha dois problemas, dividindo-se em um PIC16 e memória para o buffer de anel. Esta resposta mostra que a divisão não é difícil. É certo que não aborda o problema da memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar as respostas de outros. Uma vez que algumas das outras respostas exigem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como conseguir isso eficientemente em um PIC16. Ndash Martin 20 de abril 12 às 13:01 Há uma resposta para um verdadeiro filtro de média móvel (aka filtro de caixa de depósito) com menos requisitos de memória, se você não se importa com o downsampling. É chamado de filtro integrador-pente em cascata (CIC). A idéia é que você tenha um integrador que você tome diferenças em um período de tempo, e o dispositivo chave de economia de memória é que, por downsampling, você não precisa armazenar todos os valores do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras estadisticas. Obviamente, você pode obter um melhor desempenho se o seu estadista e decimationFactor forem poderes de 2, de modo que os operadores de divisão e restante sejam substituídos por turnos e máscaras-es. Postscript: Eu concordo com a Olin que você sempre deve considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisar da freqüência-nulos de um filtro de caixa, um filtro passa-baixa de 1 pólo ou 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma entrada de alta taxa de amostragem e avaliando-a para uso por um processo de baixa taxa), um filtro CIC pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o buffer de toque completamente com apenas um único valor de integrador anterior) Há uma análise aprofundada da matemática por trás do uso do filtro IIR de primeira ordem que Olin Lathrop já descreveu na troca de pilha de processamento de sinal digital (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isto pode ser implementado usando apenas números inteiros e sem divisão usando o seguinte código (pode precisar de alguma depuração como eu estava digitando de memória.) Este filtro se aproxima de uma média móvel de As últimas K amostras, definindo o valor de alfa para 1K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16, defina BITS para 4, para K 4, defina BITS para 2, etc. (Verifique o código listado aqui assim que eu receber uma mudança e Edite esta resposta, se necessário.) Respondeu 23 de junho 12 às 4:04 Heres um filtro passa-baixa de um único polo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem e quase sem memória. Nota: Todas as variáveis têm um alcance além da função de filtro, exceto o passado em newInput Note: Este é um filtro de estágio único. Múltiplos estágios podem ser conectados em cascata para aumentar a nitidez do filtro. Se você usar mais de um estágio, você precisará ajustar o DecayFactor (como se relaciona com a frequência de corte) para compensar. E, obviamente, tudo que você precisa é que as duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro possui um tempo de aceleração antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar o MovingAverage para o primeiro valor do newInput em vez de 0 e espero que o primeiro NewInput não seja um outlier. (CutoffFrequencySampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Os flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu apenas prefiro duplas. Se você precisa ficar com números inteiros, você pode converter DecayFactor e Factor de amplitude em inteiros fracionários, nos quais o numerador é armazenado como inteiro e o denominador é uma potência inteira de 2 (para que você possa mudar de bit para a direita como o Denominador em vez de ter que dividir durante o ciclo do filtro). Por exemplo, se DecayFactor 0.99 e você deseja usar números inteiros, você pode definir o DecayFactor 0.99 65536 64881. E então, sempre que você se multiplicar pelo DecayFactor no loop do filtro, basta mudar o resultado 16. Para obter mais informações sobre isso, um excelente livro é esse Online, capítulo 19 em filtros recursivos: dspguidech19.htm PS Para o paradigma da Média em Movimento, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, digamos que você quer o anterior, cerca de 6 itens em média juntos, fazendo isso discretamente, você adicionará 6 itens e dividirá por 6, então Você pode configurar o AmplitudeFactor para 16, e DecayFactor para (1.0 - AmplitudeFactor). Respondeu 12 de maio 12 às 22:55 Todos os outros comentaram detalhadamente sobre a utilidade do IIR vs. FIR e sobre a divisão de poder de dois. Eu gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você mantém N um poder de dois, toda a divisão é de um único ciclo de mudança de bits. Tampão de anel FIR básico: mantenha um buffer de execução dos últimos valores de N e uma SOM em execução de todos os valores no buffer. Cada vez que uma nova amostra vem, subtrair o valor mais antigo no buffer de SUM, substituí-lo pela nova amostra, adicionar a nova amostra a SUM e SOMN de saída. Tampão de anel IIR modificado: mantenha uma SOM executória dos últimos valores de N. Cada vez que uma nova amostra vem, SUM - SUMN, adicione a nova amostra e saia SUMN. Respondeu 28 de agosto 13 às 13:45 Se eu tiver lido você direito, você descreve um filtro IIR de primeiro ordem, o valor que você está subtraindo não é o valor mais antigo que está caindo, mas sim a média dos valores anteriores. Os filtros IIR de primeiro orden certamente podem ser úteis, mas eu não tenho certeza do que você quer dizer quando você sugere que a saída seja a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, fica alto por 30, cai uniformemente para 20 amostras e fica com baixo para 30. Uma ordem de primeira ordem Filtro IIR. Ndash supercat 28 de agosto 13 às 15:31 renderá uma onda que começa a subir bruscamente e gradualmente se nivela perto (mas não em) o máximo de entrada, então começa a cair bruscamente e gradualmente nivela perto (mas não at) o mínimo de entrada. Comportamento muito diferente. Ndash supercat 28 de agosto 13 às 15:32 Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode dar-lhe um retângulo no tempo - um sinc na freq - e você pode gerenciar os lobos laterais. Pode valer a pena lançar alguns números inteiros para tornar uma boa FIR sintonizada simétrica se você pode poupar os tiques do relógio. Ndash Scott Seidman 29 de agosto 13 às 13:50 ScottSeidman: Não há necessidade de se multiplicar se um simplesmente tiver cada estágio da FIR ou produzir a média da entrada para esse estágio e seu valor armazenado anterior, e depois armazenar a entrada (se tiver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende do aplicativo (a resposta de passo de um filtro de caixa com um atraso total de 1 ms, por exemplo, terá um pico d2dt desagradável quando a entrada muda, e novamente 1 ms depois, mas terá o mínimo Possível ddt para um filtro com um atraso total de 1ms). Ndash supercat 29 de agosto às 15:25 Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória e você não se importa que sua resposta de impulso seja exponencial (em vez de um pulso retangular), eu iria por um filtro exponencial de média móvel . Eu os uso extensivamente. Com esse tipo de filtro, você não precisa de nenhum buffer. Você não precisa armazenar N amostras passadas. Apenas um. Então, seus requisitos de memória são reduzidos por um fator de N. Além disso, você não precisa de nenhuma divisão para isso. Somente multiplicações. Se você tem acesso à aritmética de ponto flutuante, use as multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e mude para a direita. No entanto, estamos em 2017 e eu recomendaria que você usasse compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais eficiente e mais eficiente em memória (você não precisa atualizar itens em qualquer buffer circular), eu diria que também é mais natural. Porque uma resposta exponencial de impulso corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Respondeu 20 de abril 12 às 9:59 Um problema com o filtro IIR como quase tocado por olin e supercat, mas aparentemente desconsiderado por outros é que o arredondamento apresenta alguma imprecisão (e potencialmente biastruncação). Assumindo que N é um poder de dois, e apenas uma aritmética inteira é usada, a direita de mudança elimina sistematicamente os LSBs da nova amostra. Isso significa que, quanto tempo a série possa ser, a média nunca levará em consideração essa série. Por exemplo, suponha uma série que diminua lentamente (8,8,8. 8,7,7,7. 7,6,6) e assume que a média é de fato 8 no início. A amostra do punho 7 trará a média para 7, independentemente da força do filtro. Apenas para uma amostra. A mesma história para 6, etc. Agora pense no contrário. A série sobe. A média permanecerá em 7 para sempre, até que a amostra seja grande o suficiente para fazê-la mudar. Claro, você pode corrigir o viés, adicionando 12N2, mas isso realmente não resolverá o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até a amostra ser 8-12 (N2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Eu acredito que uma solução para isso implicaria manter um acumulador de LSBs perdidos. Mas eu não consegui o suficiente para ter o código pronto, e não tenho certeza de que isso não prejudicaria o poder do IIR em alguns outros casos de séries (por exemplo, se 7,9,7,9 seria médio para 8). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurar dois valores médios com o resultado do primeiro alimentado no segundo em cada iteração. Qual é o benefício deste Filtro Médico Mover (filtro MA) Carregando. O filtro de média móvel é um filtro Low Pass FIR (Finite Impulse Response) simples comumente usado para suavizar uma série de datasigns amostrados. Demora M amostras de entrada por vez e leva a média dessas M-samples e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M), a suavidade da saída aumenta, enquanto que as transições afiadas nos dados são tornadas cada vez mais contundentes. Isso implica que este filtro possui uma excelente resposta ao domínio do tempo, mas uma resposta de freqüência fraca. O filtro MA executa três funções importantes: 1) Demora os pontos de entrada M, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos de computação envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro atua como um filtro de passagem baixa (com resposta de domínio de freqüência fraca e uma resposta de domínio de tempo bom). Código Matlab: O código matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também faz a resposta de freqüência para vários comprimentos de filtro. Resposta de Domínio de Tempo: no primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A próxima figura é a resposta de saída de um filtro de média móvel de 3 pontos. Pode deduzir-se da figura que o filtro de 3 pontos de média móvel não fez muito na filtragem do ruído. Aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é retratado na próxima figura. Aumentamos as torneiras até 101 e 501 e podemos observar que mesmo - embora o ruído seja quase zero, as transições são apagadas drasticamente (observe a inclinação de cada lado do sinal e compare-os com a transição ideal da parede de tijolos em Nossa contribuição). Resposta de frequência: a partir da resposta de freqüência, pode-se afirmar que o roll-off é muito lento ea atenuação da faixa de parada não é boa. Dada esta atenuação da faixa de parada, claramente, o filtro de média móvel não pode separar uma faixa de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em desempenho fraco no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: livros recomendados: barra lateral primária
Comments
Post a Comment